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Expressions for the temperature factors of internuclear density units are derived in the harmonic approx- 
imation of lattice dynamics. The vibration tensors of internuclear density units are a linear combination of 
the vibration tensors of the adjacent nuclei and the corresponding coupling tensors. The coupling tensors 
cannot be determined by diffraction experiments but must be determined by other means. For molecular 
crystals, the coupling tensors for the internal modes can be calculated from a complete force-constant 
matrix, and the coupling tensors for the external modes can be determined by applying the model of rigid- 
body motions. 

I. Introduction 

In the experimental determination of electron density 
distributions, models with internuclear density units 
are often used for which temperature factors are 
needed, e.g. Hirshfeld & Rabinovich (1967); Brill, 
Dietrich & Dierks (1971); Coppens, Willoughby & 
Csonka (1971); Dietrich & Scheringer (1975). Since a 
bond peak between the nuclei cannot be attributed 
solely to any of the adjacent nuclei, one cannot expect 
the temperature factor of one of the adjacent nuclei to 
be appropriate. The purpose of this paper is to derive a 
general expression for the temperature factors of inter- 
nuclear density units in the harmonic approximation 
of lattice dynamics. 

2. Derivation of the temperature factors 

One way of deriving the temperature factors for inter- 
nuclear density units consists of a modification of the 
lattice-dynamical derivation of the Debye-Waller 
factors, such as given by Cochran & Cowley (1967). We 
have carried out this derivation, but the presentation 
of the general case becomes cumbersome. In this paper 
we use another approach which is shorter and leads 
to the same result. We start with the most general form 
of the dynamic density and derive the structure factors 
in the convolution approximation. Two assumptions 
will be made: 

(1) The structure factor for any form of the density 
distribution in the crystal is the Fourier transform 
of the average density in the unit cell. 

(2) The vibrations of the atomic nuclei are harmonic, 
i.e. in thermal equilibrium, the nuclei have a Gaus- 
sian distribution (Bloch, 1932; Maradudin, Mon- 
troll & Weiss, 1963). 

The validity of the first assumption was proved by 
Marshall & Lovesey (1971, ch. 2) for neutron diffrac- 
tion by crystals. If we replace the scattering potential 

for neutrons with the electron density distribution, we 
can adopt Marshall & Lovesey's proof for the diffrac- 
tion of X-rays. Our derivation will show that the 
temperature factors for internuclear density units 
depend on the coupling of the nuclear vibrations. A by- 
product of our derivation will be a proof that the 
temperature factors of the nuclei do not depend on the 
internuclear vibrational coupling - a result which until 
now could only be established by means of lattice 
dynamics. 

Within the limits of the Born-Oppenheimer approx- 
imation, we assume that the distribution of the bonding 
electrons rearranges itself instantly for every thermal 
configuration of the nuclear positions. The dynamic 
density of a molecule is the average of all densities 
which belong to the various configurations, positions 
and orientations of the molecule. Let the molecule have 
m nuclei; the rn displacement vectors of the nuclei 
relative to their equilibrium positions are denoted by 
the vector u. The frequency of the nuclear configura- 
tion u isf(u)du, and the respective density distribution 
at the position x is Q(x,u). Then, the exact form of the 
dynamic density is 

Q(X)ayn = 0(x,u)f(u)du. (2.1) 
--O0 

Q(X)ayn is uniquely defined for a given distribution func- 
tion f(u). In the convolution approximation, the total 
density distribution is divided into n rigid units, the kth 
unit being centred at the position Xk. Its distribution is 
&(x-Xk). The dynamic density is then the average of 
all configurations of the vibrating rigid units, and (2.1) 
takes the form 

~)(X)dyn = Qk(X-- Xk--Uk)f(u)du. ( 2 . 2 )  
k--1 -oo  

Uk is the displacement vector of the kth unit from its 
equilibrium position. In contrast to the definition (2.1), 
the density is not determined solely by the distribution 
function f(u). With (2.2), ~O(X)dy n depends also on the 
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particular choice of the density units ~k(X --  Xk) (number, 
size and shape). 

In the harmonic approximation, the distribution 
function for a single nucleus r in thermal equilibrium is 
a Gaussian (Bloch, 1932), i.e. 

- z u .  U. lUr). (2.3) f(ur)=(2~)-a/Z(det U~)- 1/2 exp ( 1 T - 

U, is the 3 x 3 covariance matrix of the vector u~. If all 
the nuclei vibrate independently, f (u) is given by 

f (u )=  f i  f(u~). (2.4) 
r = l  

In a molecule, the nuclei usually do not vibrate in- 
dependently; rather they are coupled to some extent. 
Then, in the harmonic approximation, f(u) is a 3m- 
dimensional Gaussian and is determined by the 
3m x 3m covariance matrix of the random vector u. 
Hence, in the general case, 

f (u )=  (2~)- 3m/Z(det U)-  1/2 exp (--½uTU - lU). (2.5) 

The difficulty in the further treatment of (2.2) and (2.5) 
is that the displacement vector Uk does not explicitly 
appear in the 3m x 1 displacement vector u of the 
nuclei. (2.2) can be worked out only if the relation 
between Uk and u is established and if the distribution 
functionf(u) is rewritten into the distribution function 
f(Uk). This program will form the essence of the 
following derivation. 

We choose the general and primarily interesting case 
where the kth density unit is attached to several nuclei, 
say p, p <m.  For the displacement vector Uk we can 
assume a linear relation of the form* 

p p 

U k :  E O~rUr, ~ , = 1 .  ( 2 . 6 )  
r = l  r = l  

This means, physically, that the density unit k is 
'carried along' with the p nuclei. The calculation of 
the coefficients ~ is discussed in § 3. First we show that 
those parts of the covariance matrix U which belong to 
the m - p  non-relevant nuclei do not matter in the 
further calculation, even if the motions of the m - p  
nuclei are coupled with those of the p relevant nuclei. In 
a second step, we show how the 3p x 3p relevant sub- 
matrix of U contributes to the covariance matrix of the 
kth density unit. We combine the p displacement vec- 
tors u~ of the p relevant nuclei into a 3p × 1 column 
matrix up, and formally describe the relation between 
Up and u with a 3p x 3m matrix Ap by the equation 

up=Apu. (2.7) 

Now we refer to a theorem about the transformation of 
covariance matrices and Gaussian distribution func- 

* In the harmonic approximation only a linear relation is 
permitted. A non-linear relation, e.g. one containing the term flur. ur, 
gives rise to deviations from the harmonic approximation for the 
displacements Uk, if one assumes that the u, satisfy the harmonic 
approximation. The normalization of the ~, in (2.6) arises from the 
condition that, in the limit Uk =Ur, the kth density unit is attached 
solely to the rth nucleus. 

tions (Linnik, 1961, p. 43). With (2.7) the covariance 
matrix U v of the random vector up is given by 
Up=ApUA r, and Up is normally distributed. Inspec- 
tion of this result shows that Up is just the 3p x 3p sub- 
matrix of U, which belongs to the p relevant nuclei. 
The frequency of the random vector up is given by 
f(up)dup, where the integration over the displacement 
vectors of the m - p  non-relevant nuclei is assumed to 
have been carried out. This result is a generalization of 
the theorem that the marginal distributions of a multi- 
dimensional Gaussian distribution are equal to the 
corresponding one-dimensional distributions that are 
contained in the multidimensional Gaussian. We now 
apply the theorem about the transformation of co- 
variance matrices and Gaussian distribution functions 
to Up andf(up) with respect to the transformation (2.6). 
We obtain a 3 x 3 covariance matrix for the kth density 
unit according to 

p p 

Uk = Z Z ara~'Urr', (2.8) 
r = l  r ' = l  

and the displacement vector Uk is normally distributed 
as given by (2.3). U., is a 3 x 3 diagonal block and 
Urn,, r ' #  r, is an off-diagonal block of the covariance 
matrix U. Instead of (2.2) we now obtain for the 
dynamic density 

O(Xhyn = ~.,.., Ok(× -- ×k -- Uk) 
k = l  - c o  

x (2tO- a/Z(det Uk)- 1/2 exp (-- :~Ukl TUg- lUk)dU k. (2.9) 

Now we can derive the structure factor from (2.9). Let 
h be the vector in reciprocal space, and let the Fourier 
transform of Ok(X--Xk) with respect to the common 
origin be gk(h) exp (2rcihrXk), and let the Fourier trans- 
form off(uk)  with respect to the eciuilibrium position 
Xk (Uk = 0) be Tk(h). Fourier inversion of (2.9) yields 

F(h)ayn = ~ gk(h)Tk(h) exp (2rcihrXk), (2.10) 
k = l  

where 

Tk(h) = exp ( - 2rc2hrUkh). (2.11) 

From its position in (2.10) we see that Tk(h) is what is 
conventionally called the temperature factor. Hence, 
Uk is the vibration tensor of the kth density unit. For 
p>_ 2 not only the diagonal blocks of the covariance 
matrix U, i.e. the vibrational tensors of the nuclei, 
contribute to Uk but also the off-diagonal blocks, i.e. 
the coupling tensors Urr' (el 2.8). Thus, the temperature 
factors for the internuclear density units are also deter- 
mined by the internuclear thermal coupling. 

If, however, the density units are bound only to one 
nucleus, or are identical with the individual atoms, we 
obtain the known result for the structure factor: the 
coupling of the vibrations of the nuclei does not 
explicitly occur in the structure factor, since we have 
p = 1, c~r = 1, and Uk = Ur. Thus, the off-diagonal blocks 
of the covariance matrix are ruled out, a result which 
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until now has only been established by means of lattice 
dynamics. 

From (2.8) we can derive the general result that the 
vibration tensors of internuclear density units are 
smaller than the vibration tensors of the adjacent 
nuclei (except for the case of rigid translations). For 
this purpose we introduce the symmetric and positive 
definite tensors* 

Arr,=Ur-i-Ur,-Urr,-Ur,r, (2.12) 

(Scheringer, 1972b). We insert (2.12) into (2.8) and, after 
a reordering of terms, obtain 

p p p 

Uk = Z (x,U,- E Z a,a,,A,,,. (2.13) 
r = l  r = l  r ' = r +  1 

The first term in (2.13) is the weighted average of the 
tensors U ,  Since At,, is positive definite, a positive 
term is subtracted from this average. Neither the 
coupling tensors nor the tensors Uk can be determined 
from diffraction data; hence these tensors have to be 
determined by other methods. 

The external modes of molecules in crystals can be 
represented by rigid-body motions. We shall now 
apply the methods used in this section to this model. 
A rigid body has not 3m, but only six degrees of 
freedom, which can be described by three translation 
parameters xz and three libration parameters q~. The 
covariance matrix U being set up for the m nuclei of 
the molecule will become singular (of rank 6), and U -  
and f(u) cannot be formed. Hence, the appropriate 
distribution function for the variables x, and q~ has 
to be used. The appropriate covariance matrix is 

and the displacement vector u~ x' at the position ×k in 
the molecule is 

uT, xt= x t -  Vk~. (2.15) 

Vk is an antisymmetric tensor and contains the com- 
ponents Xk in a Cartesian coordinate system. Applying 
the transformation law for covariance matrices and 
Gaussian distribution functions (Linnik, 1961) to 
(2.14) and (2.15) we obtain for the covariance matrix 

U~,Xt=T+VkLVkr--VkS--(VkS) r, (2.16) 

and the displacement vector Uk is normally distributed 
according to (2.3) with (U~, xt)- 1 in the exponent. If the 
density unit is attached to just one nucleus then (2.16) is 
identical with the result already derived by Schomaker 
& Trueblood (1968), and by Pawley (1968). Our deriva- 
tion has the merit of being shorter than the derivations 
cited. 

* Since r U,,,=U,,,, A,,, is symmetric. From (3.2) and (3.3) of 
Scheringer (1972b) it follows that the diagonal components of A,~. 
are positive, and are zero for the case of rigid translations. Since this 
holds true for any coordinate system, it also holds true for the 
system in which A,,, is diagonal. Hence, A,,. is positive (semi) definite. 

So far we have deliberately refrained from making 
use of any results of lattice dynamics. Now we would 
like to consider two points in the light of lattice 
dynamics. The coupling tensors U,r, have been shown 
to be the off-diagonal blocks of the mean-square- 
amplitude matrix of the atoms in the unit cell 
(Scheringer, 1972a, b). Hence the coupling tensors can 
be calculated from the interatomic force constants or 
from the lattice frequencies and eigenvectors respec- 
tively. Furthermore, lattice-dynamical considerations 
confirm our linear relation (2.6). In the lattice-dynam- 
ical derivation of our results (2.8), we have used a corre- 
sponding linear approach, u(Ik)=E~ru(lr), for the 
displacements of the kth density unit in the/ th  cell. In 
the harmonic approximation, the equations of motion 
have a plane-wave solution for the displacements u(/r) 
of the nuclei. Only a linear relation yields a plane-wave 
description for the displacements u(Ik). Thus, any non- 
linear approach for the displacements u(/k) violates 
the harmonic approximation. 

3. Determination of the coefficients g, 

In the harmonic approximation we have to assume 
that the displacements u, and uk are small relative to 
the distances between the nuclei. For small variations 
ur and Uk, we can consider the a, as constants. Putting 
u, = dx ,  and Uk = dXk, we obtain by integration of (2.6) 
from a common vector origin 

p p 

Xk=~OC,X,, ~ , - - - - 1 .  (3.1) 
r :  l r :  l 

(3.1) is formally identical with the equation for the 
centre of gravity, whereby the a, represent the 'masses' 
at the positions xr. We can interpret (3.1) so that the 
total mass of the density unit is distributed at the posi- 
tions x, with fractions ~r, whereby the centre of gravity 
of the density unit remains unchanged. With (2.6), the 
displacements Uk are then determined by the displace- 
ments u, to the extent given by the mass fractions ar at 
the positions x,. This determination of the Uk appears 
to be reasonable. (Such a picture of the dynamic 
behaviour of the density units is, of course, applicable 
only in the framework of the convolution approxima- 
tion, and should not be conceived as being a physically 
exact statement about the dynamic behaviour of the 
bonding electrons.) In order to obtain the coefficients 
~r, we first have to determine the centroid Xk of the 
density unit (by integration). From (3.1) we then 
obtain 

p - 1  

O~,(X,-- Xp)= Xk-- Xp (3.2) 
r = l  

for the calculation of the p - 1  unknown coefficients 
e,. For p = 2, the density unit should lie on the straight 
line through the two nuclei. For p = 3 the three nuclei 
may not lie on a straight line, and the density unit 
should lie in the plane of the three nuclei. For p = 4, the 
four nuclei may not lie in a plane, and for p > 4, p - 4  
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coefficients ~ can be freely chosen. Hence, the co- 
variance matrix Uk is not determined for the case 
p > 4, and cannot, even when we know all the coupling 
tensors, be determined directly, but only with addi- 
tional information about the ~r. If, for p = 2, the density 
unit does not lie on the straight line through the two 
nuclei (bent two-centre bond), then the best we can do 
is calculate ~1 and (z 2 from the point Xk, which is the 
intersection of the straight line and the line through 
the centroid perpendicular to the straight line. A 
corresponding procedure should be used for a bent 
three-centre bond where the centroid of the density 
unit does not lie in the plane of the three nuclei. How- 
ever, a unique solution for bent bonds can be derived 
from the model of rigid-body motions. 

4. Determination of the coupling tensors 

We restrict our discussion to the case of molecular 
crystals since the internuclear density units (overlap 
densities) appear mainly with molecules. With molec- 
ular crystals, one can often assume with reasonable 
certainty that the internal and external modes are 
separated and contribute separately to the vibration 
and coupling tensors. We shall make this assumption 
in the following. 

The contribution of the internal modes IT i"t to the v , ,  
coupling tensors can be obtained from a complete 
force-constant matrix, but, for its determination, 
infrared and Raman measurements have to be made, 
possibly with several isotopic compositions of the 
molecule. However, there are two difficulties: firstly, 
the low-frequency modes make the largest contribu- 
tion to the vibration tensors (Scheringer, 1972c), 
although their force constants can often be determined 
only with low accuracy. Secondly, for low temperatures, 
the vibration tensors are usually calculated with the 
matrix series expansion given by Cyvin (1968). At 
100 K, this expansion is, however, only valid for 
frequencies smaller than 424 cm-  1 i.e. it does not hold 
for most of the high frequencies of the internal modes. 
Moreover, we found that the series converges badly 
(Fadini & Scheringer, 1977). A way out was indicated 
earlier, whereby the series expansion was circumvented 
(Scheringer, 1972a). The solutions of these difficulties 
are presently being studied with urea and thiourea 
(Fadini & Scheringer, 1977). 

The external modes of the molecule can be described 
with the aid of the model of rigid-body motions which 
are described by the tensors TLS. For the coupling 
tensors e x t  e x t  U, , ,  and the tensors A, , ,  we obtain respectively 

UeXt= T + V r L V T -  VrS-(Vr,S)  T, (4.1) r r '  

Aext (V, Vr,)L(V, V~,) T, (4.2) 
r r '  ~ - -  

(Scheringer, 1972b). V~ is an antisymmetric tensor 
which contains the Cartesian coordinates of the rth 
nucleus, relative to an arbitrary origin. (4.2) and (2.13) 
show that an antiphase part which arises only from the 

librations of the molecule is subtracted from the 
average Y~ erUr. In actual practice, one must first deter- 
mine the vibration tensors for the internal modes and 
subtract them from the tensors of the nuclei which 
have been determined experimentally, i.e. one should 
first calculate lIeXt=IT --flint and then TLS from the 
U~ xt. (Omission of the procedure may be tolerated for 
room-temperature data where the internal modes 
contribute less than 10~ to the vibration tensors.) In 
order to calculate the contributions of the external 
modes, one can select one of three possibilities, each of 
which has certain advantages and disadvantages: 

(1) One uses (2.16). The advantage is that the e~ need 
not be known for the external modes; this is 
particularly favourable when there are difficulties 
in determining the ~,, cf  § 3. 

(2) One uses (2.13) and (4.2). The advantage is that only 
L (and the e~) need be known, but not T and S. In 
this way one can prevent errors in T and S from 
falsifying the result. 

(3) One uses (2.8) and (4.1). Here there are no ad- 
vantages. [-With the internal modes one is always 
forced to use (2.8) or, what is the same here, (2.12) 
and (2.13).] 

In order to obtain the vibration tensors for the inter- 
nuclear density units, one finally has to calculate, 
depending on the way the external modes were dealt 
with, U k = I Tint ~ I Text A int  -4- A ext  

wJ k -I-L.~ k , o r  Art ,=  --rr'-- 'Art ' ,  o r  Urr, 
uint 4- II TM respectively. Yr' ~ ~ Y r '  
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